viernes, 28 de noviembre de 2008

Propulsión Eléctrica en los Buques (I)

Podemos decir que desde el año 1839, cuando Moritz Herman von Jacobi, diseña y construye un motor eléctrico de alrededor de 1 HP (quizás verdaderamente el primer motor eléctrico práctico) y decide montarlo sobre una embarcación existen las plantas de propulsión eléctricas en buques.

Jacobi, que había nacido en Potsdam, Prusia (hoy Alemania), y que en su juventud emigró a Rusia y cambió su nombre de Moritz Herman por el de Boris Semenovic, construye un motor eléctrico, a partir de la máquina diseñada por Willian Ritchie en 1833. El motor, que era alimentado por corriente continua procedente de baterías, lo montó accionando dos ruedas de paletas, sobre una embarcación de 38 pies de eslora. La prueba se realiza en el río Neva y llevando a 14 personas a bordo consigue una velocidad de 2,25 nudos y supone un doble hito:

Primer motor eléctrico útil (motor de corriente continua).

Primer buque con propulsión eléctrica.

25 años después, en EE.UU, se aplica la propulsión mixta en el submarino “Alistitt” utilizando máquinas alternativas de vapor para la navegación en superficie y motores eléctricos alimentados por baterías en la navegación en inmersión.

Continuando con la historia, en el año 1880 Gustave Trouvé patenta un pequeño motor eléctrico y propone instalar dos de tales motores para propulsar una embarcación, cada uno accionando una rueda de paletas en cada costado.
Siguiendo con la idea de la propulsión en buques, construye un bloque conteniendo timón, hélice y motor que pueda ser montado y desmontado fácilmente en popa de la embarcación. Lo más parecido a los fuera de borda actuales.

En el año 1904 se produce un hito importante para la propulsión eléctrica. A partir de ese año, la Nobel de Sant Petesburgo optó por montar tres motores Diesel de 120 CV directamente acoplados a las dínamos que alimentaban tanto a los motores eléctricos como a la instalación de alumbrado en los buques petroleros “Vandal” y “Samaral” de 1100Tm, destinados a operar en el Mar Caspio y el Rio Volga. Cualidades muy importantes para el diseño de estos buques eran la variación de velocidad y la inversión de marcha.
La regulación se realizaba según el principio Ward Leonard, con tensión variable hasta 500 volts, pudiendo variar la velocidad de giro de la hélice entre 30 y 300 RPM.

Este sistema no tuvo gran desarrollo por ser caro, sumando instalaciones eléctricas más los motores diesel, y salvo las ventajas de comandar las máquinas desde el puente no aumentaba las prestaciones de las máquinas alternativas de vapor que hicieron su aparición en el siglo XIX accionando primero ruedas de paletas y luego acopladas a las hélices (como comenté en un post anterior, los vi navegando en el lago Léman; buques del 1904 con este sistema de propulsión).

Aunque los sistemas de propulsión eléctrica siguieron desarrollándose, la necesidad de grandes velocidades y potencias en los buques fue cubierta por la turbina de vapor a través de una reductora/eje de la hélice o los grandes motores diesel directamente acoplados a la hélice o también a través de la reductora, innovación en los primeros años del siglo XX.

Las dos vertientes de plantas eléctricas, la que utiliza las turbinas a vapor o las que utilizan un motor diesel acoplado a un generador para generar la corriente han utilizado motores eléctricos de CA o de CC acoplados a las hélices. La de CA es básicamente un accionamiento reversible de relación de velocidad constante; le de CC es un accionamiento reversible de relación de velocidad variable.

Tuvo que llegar el final del siglo XX, para la siguiente gran innovación: el propulsor AZIPOD, (Nombre registrado como patente por ABB y significa Azimuthing Podded Drive) y en esencia consiste en una unidad de propulsión eléctrica, ubicada en una barquilla, capaz de girar azimutalmente 360º.

Las ventajas de aplicar este sistema: a) eliminar los ejes de transmisión, ya que el motor eléctrico va montado justo tras la hélice, b) eliminación de los timones pues el gobierno se mantiene gracias al giro de todo el conjunto, c) eliminación de los sistemas de maniobras, como hélices de popa y proa transversales, ya que la maniobrabilidad del conjunto es muy buena.

Con accionamiento eléctrico, se puede conseguir la plena potencia para la inversión de marcha mediante la inversión eléctrica del motor. La manipulación de controles de accionamiento eléctrico es muy sencilla y por su naturaleza puede adaptarse al control a distancia desde el puente cuando se desee.

Reacomodación de los espacios para la cámara de máquinas y espacios para la carga, reducción del ruido y de las vibraciones (dado que no existen engranajes reductores, líneas de ejes, ni hélices transversales).

La flexibilidad operativa da como resultado, menor consumo de combustible (los resultados fueron muy exitosos con ganancias de más de un 8% en capacidad de propulsión con el mismo consumo comparados frente a otros sistemas de propulsión eléctrica), reducción de costos de mantenimiento, control de las emisiones de gases de escape al medio ambiente, redundancia adecuada con menor potencia instalada.

Los principales sistemas azipoidales, según sus fabricantes son:

Azipod (ABB-MASA)
MERMAID (ALSTOM-KAMEWA)
DOLPHIN (JOHN CRANE LIPS-STN ATLAS)
SSP (SIEMES-SCHOTTEL)

En una segunda parte comentaré sobre los sistemas azipoidales
Ver también:
Norberto Sánchez
Técnico Constructor Naval
Jefe de Máquinas

No hay comentarios:

Publicar un comentario en la entrada

Subscríbete a Máquinas de Barcos vía email

Escribe tu dirección de correo:

Delivered by FeedBurner